
Empir Software Eng (2012) 17:503–530
DOI 10.1007/s10664-011-9195-3

Clones: what is that smell?

Foyzur Rahman · Christian Bird ·
Premkumar Devanbu

Published online: 24 December 2011
© Springer Science+Business Media, LLC 2011
Editors: Jim Whitehead and Tom Zimmermann

Abstract Clones are generally considered bad programming practice in software
engineering folklore. They are identified as a bad smell (Fowler et al. 1999) and a
major contributor to project maintenance difficulties. Clones inherently cause code
bloat, thus increasing project size and maintenance costs. In this work, we try to
validate the conventional wisdom empirically to see whether cloning makes code
more defect prone. This paper analyses the relationship between cloning and defect
proneness. For the four medium to large open source projects that we studied, we
find that, first, the great majority of bugs are not significantly associated with clones.
Second, we find that clones may be less defect prone than non-cloned code. Third,
we find little evidence that clones with more copies are actually more error prone.
Fourth, we find little evidence to support the claim that clone groups that span more
than one file or directory are more defect prone than collocated clones. Finally, we
find that developers do not need to put a disproportionately higher effort to fix
clone dense bugs. Our findings do not support the claim that clones are really a
“bad smell” (Fowler et al. 1999). Perhaps we can clone, and breathe easily, at the
same time.

Keywords Empirical software engineering · Software maintenance ·
Software clone · Software quality · Software evolution

F. Rahman (B) · P. Devanbu
Department of Computer Science, University of California, Davis, Davis, CA, USA
e-mail: mfrahman@ucdavis.edu

P. Devanbu
e-mail: ptdevanbu@ucdavis.edu

C. Bird
Empirical Software Engineering, Microsoft Research, One Microsoft Way, Redmond,
WA 98052, USA
e-mail: cbird@microsoft.com

504 Empir Software Eng (2012) 17:503–530

1 Introduction

The software life cycle comprises two major parts; the initial development, followed
by the active maintenance and evolution to adapt to user needs. For most other
industries, development cost is the major part of the lifetime cost of a project.
However for software development it has been found that maintenance and evo-
lution are also critical activities from the cost perspective and might comprise up to
80% of the overall cost and effort (Alkhatib 1992). Maintenance costs often can be
inflated through poor software design, code incomprehensibility, sloppy and error-
prone practices, inflexible design structures, bad assumptions etc. Researchers have
long sought to reduce maintenance costs. There has been quite a bit of work on
improving process models, tool support, language support, etc., to improve develop-
ment process and reduce bad attributes of code which might increase maintenance
costs. Often, however, poor maintainability can be traced back to poor code which
is difficult to understand, modify or more error prone. For a taxonomy of bad code
attributes refer to Fowler et al. (1999) and Mäntylä and Lassenius (2006).

Fowler et al. (1999) suggest that code duplication or cloning is a bad smell and
thus one of the major indicators of poor maintainability. Cloning is an easy, tempting
alternative to the hard work of actually refactoring the code. Unfortunately, if a
piece of code is buggy or has a latent bug, then a clone can replicate a bug silently.
To aggravate the situation, developers may often perform the cloning hastily and
without proper care about the context. This could mean that even bug-free code
could become buggy after cloning (Jiang et al. 2007b). Furthermore, developers
may even copy others’ code without fully understanding it. This may introduce
another classic fault proneness through poorly understood code. For these reasons,
the practice of cloning has been shunned for many years and a considerable body
of research work has been devoted to automatically find clones; some even try to
automatically refactor them (Balazinska et al. 1999; Higo et al. 2005; Komondoor
and Horwitz 2003).

At the same time, another body of research presents evidence that clones improve
productivity and they may not be as bad as some claim. Kim et al. (2005) argue
that aggressive refactoring is not worth the effort, as most clones are short lived.
Also, they suggest that long lived clones may not be refactorable due to language
limitations. Kapser and Godfrey (2006) present evidence that clones are made
deliberately and improve developer productivity. Thummalapenta et al. (2009) assert
that developers are actually quite capable of remembering and updating clones
consistently whenever required, even when they reside in very different parts of
the system. However, prior research has not tried to establish a direct relationship
between end product quality and cloning. We take the view that product quality is
a major barometer of product success and if clones have much impact on product
quality, we claim it a serious disadvantage for cloning proponents. One good ap-
proximation of product quality is the number of defects found in the product. More
defects could make a system unusable and make its users unhappy. In this paper we
try to assess clones’ impact on defect occurrence of software products.

Considering the entire population of bugs, it would be interesting to determine
how many of these are associated with cloned content. Do clones contribute a very
small proportion of bugs, or the vast majority? This gives us an indication of how
important clones are in overall project quality.

Empir Software Eng (2012) 17:503–530 505

RQ1: To what extent does cloned code contribute to bugs?

Next, we examine the converse question. Considering the code implicated in
defect repair (“buggy code”), are clones unduly over-represented in this code? If
buggy code contains many clones, then this suggests that we would do well to refactor
out clones, or at least inspect all the clone code.

RQ2: Do clones occur more often in buggy code than elsewhere?

Next, we’d like to know whether clones with many copies (“prolific clones”) are
worse than clones with fewer copies (“non-prolific clones”). One can easily imagine
that as copies proliferate, it is likely that the chance of accidentally introducing errors
will increase.

RQ3: Are prolific clone groups more buggy than non-prolific clone groups?

Next, we try to assess the impact of scattered cloning—clones that span multiple
files/directories—on defect proneness. One would expect that scattered clones are
more likely to span incompatible contexts, which could increase their error prone-
ness. Moreover, such clones could be more likely to escape a possible bug fixing
change propagation.

RQ4: Are scattered clones more buggy than collocated clones?

Finally, we try to answer whether fixing bugs with higher clone content require
more effort. One would expect that clone-related bugs would require propagation
of fixes in multiple copies. This could require more effort to fix clone-related bugs,
resulting in larger bug fixing changes (as measured in number of lines changed).
Alternatively, it is possible that cloned code is mostly good, and, if copied incorrectly,
will require relatively smaller fixes to resolve naming issues, etc. These questions are
considered in the final research question.

RQ5: Do bugs with higher clone content require more effort to fix?

We try to answer our questions empirically by analyzing four major open source
projects, namely: Apache, Evolution, Gimp and Nautilus. Our study casts doubt on
the widespread belief that cloning leads to lower software quality. In all projects, we
found that most bugs have nothing to do with cloned code (RQ1). Furthermore, we
found buggy code is less likely to have cloned code when compared to the project
overall (RQ2). We also found no evidence to support the claim that prolific clones
have more buggy code than the non-prolific ones (RQ3). Moreover, our study does
not support the claim that scattered clones may be more defect prone than collocated
clones (RQ4). Finally, we find no evidence that bugs with higher clone content
require larger bug fixing changes (RQ5).

Our results might encourage researchers to put more effort on automatic clone
maintenance (such as simultaneous editing or tools to track clones and their evolu-
tion, including inconsistent change flagging) than refactoring and eliminating them.

506 Empir Software Eng (2012) 17:503–530

In addition, and rather surprisingly, one might conclude that bug-prediction tools
could use cloned content as a negative indicator of defect-proneness!

The rest of the paper is organized as follows. Section 2 discusses related works,
Section 3 defines common terms used in the rest of the paper, Section 4 discusses data
sets, Section 5 discusses findings, Section 6 presents case study, Section 7 discusses
threats to validity and finally we conclude in Section 8 with some recommendation
and a summary of our findings.

2 Related Work

2.1 Automatic Detection of Clones

There has been quite a bit of research on automatic clone detection. Based on the
similarity analysis, clone detectors can be classified in four categories:

String Based Similarity Baker’s Dup (Baker 1995) uses a line-based string match-
ing algorithm. Dup removes all whitespace and comments and replaces identifiers
with special parameters before analyzing similarity. String based algorithms are less
robust, and susceptible to code formatting and spurious code elements.

Token-based Similarity The token-based approach uses a lexer to tokenize and
then finds whether the same series of tokens appear in two code fragments. It also
renames identifiers and ignores whitespace, but is usually more robust than the string
based approach. CCFinder (Kamiya et al 2002) and CP-Miner (Li et al 2004) are two
prominent examples of the token based approach.

AST Similarity AST similarity-based clone detection tools first convert the pro-
gram to an abstract syntax tree. Finding clones consequently amounts to finding
similar ASTs. Baxter et al. (1998) propose a AST-based clone detector that detects
clones by finding identical subtrees. Deckard (Jiang et al. 2007a) also uses the
AST-based approach but instead of comparing subtrees directly it computes char-
acteristics vectors to approximate structural information within the AST and then
adapts Locality Sensitive Hashing (LSH) to efficiently cluster similar vectors. Similar
code is clustered together and declared as clones. In our study, we used Deckard for
clone detection.

Semantics Aware Approach Finding semantically similar code segments is unde-
cidable in general; typically various approximation techniques are used. Komondoor
and Horwitz (2001) use program dependence graphs (PDG) and program slicing to
identify clones. Such techniques have not traditionally scaled for large programs.
However, Gabel et al. (2008) were able to scale a PDG based semantic clone
detection approach for several million lines of code by reducing graph similarity to a
simpler tree similarity problem.

For a survey on clone detection research, please refer to Roy and Cordy (2007).
Note, there is no community-wide precise definition of what a clone is. Consequently,
different tools will provide different sets of clones. This is a threats to validity that

Empir Software Eng (2012) 17:503–530 507

we try to minimize by making use of Deckard, which represents the current state of
the art in clone detection.

2.2 Clone Evolution

Several studies have investigated the extent and evolution of cloning in different
software projects. These studies report between 5 to 50% of the source code being
cloned (Baker 1995; Ducasse et al. 1999). Kim et al. (2005) investigate evolution of
clones and build a clone genealogy. Their findings indicate that most of the clones are
short lived, and therefore over-aggressive refactoring may be overkill. They also find
that the long-lived clones diverge so much that they can no longer be refactored with
existing language support. Geiger et al. (2006) examine whether clones in different
files induce change coupling. Kim et al. (2004) study the copy-paste behavior of
programmers and propose a taxonomy of clones in their paper. Kapser and Godfrey
(2006) propose a categorization of patterns of clones, and analyze the motivation,
maintenance impact, advantage, disadvantage and structural manifestation of the
patterns. They conclude that cloning is a reasonable design decision and tools
should be developed with long term maintenance of duplicates in mind. Kapser and
Godfrey (2008) qualitatively classify clones as “good”, “incidental”, “harmless” and
“harmful” and compare the relative presence of different categories of clones. Their
findings suggest that majority of the clones are not harmful. In this study we classify
the clones quantitatively based on their defect proneness and study their impact on
overall software quality. Krinke (2007) studies consistent and inconsistent changes
to clones and finds that only 50% of the clone groups undergo consistent changes;
once made inconsistent, the groups remain inconsistent. Krinke (2008) study cloned
code stability where he concludes that cloned code is more stable than non-cloned
code. Cai and Kim (2011) study different clone, code and process related predictors
and their impact on the clone survival time. They find that the size of the clone, the
number of clones in a clone group and the number of methods the clones are located
in (method-level dispersion) are not determining factors for the survival time of the
clones. On the other hand, the more developers maintain the cloned code, the longer
the clones survive. Also, the longer it has been since the last addition or deletion of a
clone member in a group, the longer the clones survive. In this paper, we study clone
dispersion at file-level and directory-level and its impact on defect proneness. Göde
and Koschke (2011) study the extent of inconsistent changes to cloned code and find
that most clones are rarely changed and the number of unintentional inconsistent
changes to clones is small. While the infrequent inconsistent changes to clones could
be a positive news for clone proponents, other researchers find that late propagation
is significantly more defect prone (Barbour et al. 2011).

2.3 Tool Support

There has been quite a bit of research on tools for clone maintenance. Toomim et al.
(2004) hypothesize that programming abstraction such as functions and macros have
inherent cognitive cost which motivates developers to clone the code instead. How-
ever, such cloning could make change propagation difficult. They propose linked
editing to edit multiple regions of code without much programmer intervention. They
also compare functional abstraction with linked editing and find that their approach

508 Empir Software Eng (2012) 17:503–530

could be orders of magnitude more efficient than traditional functional abstraction.
In this study, we compare the effort (as measured in terms of number of lines
changed) to fix a bug based on its clone content. Ekoko and Robillard (2007) propose
a tool for tracking clones in evolving software. Their tool supports simultaneous
editing of clones, along with notification to developer when one of the clones
changes. A clone tracking tool could reduce possible bug-inducing inconsistent
changes while allowing developers greater latitude. Bruntink et al. (2005) propose
automatic aspect mining based on clone detection. SHINOBI (Kawaguchi et al. 2009)
tries to identify clones in real time and is integrated with Microsoft Visual Studio to
aid maintenance. Clever (Nguyen et al. 2009) integrates with SVN to facilitate better
management of clones.

2.4 Clones and Bugs

Researchers have studied the effect of clones on software quality. Juergens et al.
(2009) study inconsistent clones as detected by their tool. They use manual an-
notations by developers to determine faults in inconsistent clones, and conclude
that unintentionally made inconsistent clones are more likely to contain defects.
Statistical tests of significance are not presented. As described below, our approach
relies on data mined from bug repositories, rather than manual annotation. Jiang
et al. (2007b) propose an approach on detecting clone-related bugs based on context.
Their approach tries to detect similar sections of clones, and then based on their
contextual difference suggests whether a possible bug is lurking. Thummalapenta
et al. (2009) study clone maintenance and their evolution pattern. They find that
changes are consistently propagated when needed and developers actually seem to
remember the clone locations that require such propagation. They also find cloning
often being used as a templating mechanism. They find that clone characteristics such
as clone granularity or clone radius have little impact on clone evolution. As a whole
their study views clones positively. They argue that while better tool support for clone
maintenance would help, aggressive refactoring to eliminate clones is probably not
worthwhile. We complement their study by analyzing the impact of scattered clones
on software defects. Śliwerski et al. (2005) studied source code changes that induce
fixes. Their approach of determining fix-inducing-change is similar to our buggy code
determination approach. However, instead of finding the origination of a buggy code,
we map the buggy code to some intermediate snapshot and analyze its properties at
that point in time. Selim et al. (2010) study the impact of clones on software defects.
They find that the relative defect proneness of clones vary across different systems.
For some systems cloned methods could be more defect prone, while for others they
could be less defect prone. In our earlier study (Rahman et al. 2010) we find that
clones are actually less buggy than overall project code. We also find that frequently
copied clones are less buggy than clones with fewer copies. In this paper, we extend
that study by further examining the defect proneness of scattered clones and the
required effort to fix clone-related bugs.

3 Terminology

In this section we will define all the terminology and background of our experiment.

Empir Software Eng (2012) 17:503–530 509

3.1 Snapshot and Revision

Source code management systems (SCM) typically provide a rich version history
of software projects. This information includes file history, such as when a file was
added/removed/modified; author history, such as who wrote a particular line in a
file; commit history, such as when a file was committed; commit log, such as the
contribution of a commit etc. In our study we identify each of these commits as
a revision, where a revision r = 〈A, T, f1, f2, . . . , fn〉. Here, A is the author of the
revision who modified a set of files { fi} and committed the revision at time T. Our
study examines the impact of cloning throughout the project life cycle and thus
must find clones in all the revisions committed into the SCM. Checking for clones
on every revision of every file is not feasible. Instead we run clone detection only
once a month from project inception to the end of available project history. We
call each of these chosen monthly revisions as snapshot. So, we have a collection
of snapshots S = 〈s1, s2, . . . , sn〉, where si is the first revision committed in month i,
i.e., si = ri1, where 〈ri1, ri2, . . . , rim〉 are the revisions committed in month i. Note that
our months may not coincide with calender months; we start monthly epochs from
the first revision date of a project. For each such snapshot, we check out all the files
extant at that time in the project history and run clone detection on them.

We used Git for our repository; for speed, we migrated other repositories (SVN
and CVS) to Git.

3.2 Finding Clones

In this paper, the term clone refers to a code clone, i.e. similar fragments of code
sections, as output by the clone detector. A clone detector’s output O typically
consists of a set of clone groups; O = {g1, g2, . . . gn}, where each of the groups gi

contains a set of code sections that are similar to each other, i.e., clone group
gi = {c1, c2, . . . , cn}, and each of the clones are defined as ci = 〈s j, fk, ls, le〉. Here s j

refers to the snapshot in which this clone was found, fk refers to the file that contains
clone ci and ls and le indicates start and end line number.

We detect clones on all the snapshots si. For each of the snapshots, we ran
Deckard (Jiang et al. 2007a) on that snapshot to get all the clone information. From
Deckard output, we extract filename, line number, which clone a line belongs to
and the sibling clones. For our study, we ran Deckard with a conservative and a
liberal clone detection parameter setting. This is to reduce study bias towards a
particular clone detector parameter setting and to understand system behavior as
the clones become more dissimilar. For the conservative mode, we set minimum
token parameter for Deckard to 50 (clones must be at least 50 tokens in length) and
similarity to 1.0 (clones must be nearly identical). In liberal parameter setting, we
set minimum token to 50 and similarity to 0.99 (to allow greater divergence). In both
cases we set Deckard stride to 2. We also experimented with several other parameter
settings such as <50, 1.0, 16> and <50, 0.95, 4>, <50, 1.0, Infinity> and <30, 0.95,
Infinity> where they are represented as <Min Token, Similarity, Stride>, and found
similar results. We chose Deckard as it is previously shown to be a very scalable,
and finds more clones than CCFinder or CP-Miner with few false positives (Jiang
et al. 2007a). Our choice of Deckard parameter settings for this paper came from
our observation (and also supported by the original Deckard paper) that a similarity

510 Empir Software Eng (2012) 17:503–530

less than 0.99 could give an increasingly more false positive clones. Also, smaller
token size such as 30 could detect a large number of uninteresting clones (e.g. very
small clones which involve declaration or boilerplate looping definition). Moreover,
we chose a stride size of 2, as Deckard detects highest amount of clones (for a
given token and similarity setting) at this stride setting (Jiang et al. 2007a). Also,
as Deckard detects only syntactically similar clones (including Type III clones), we
do not study semantically similar clones—also known as Type IV clones (Roy and
Cordy 2007)—in this paper.

We call the cardinality of the clone group gi as its order. So, Orderi = |gi|. We
found that on the average clone groups contain around three members (Table 2).
Moreover, the third quartile of the order of the clone groups is also around three.
Therefore, we partition clone groups into two sets: prolif ic clone groups, with more
than three members; and non-prolif ic clone groups, with up to three members.

3.3 Scattered and Collocated Clones

If all the members of a clone group belong to the same file, we call them collocated
clones. On the other hand, if a clone group has members that span more than one
file, we designate these members as scattered clones. We also define similar measure
at directory level.

3.4 Copy and Unique

For this study, we flatten all the clones detected by Deckard and consider them at
individual line level. So, for each of the lines in any of the file fi, of snapshot s, if that
line is part of any of the detected clones by Deckard, we call that a copy, otherwise
it is called unique. Note, occasionally Deckard may detect clones that overlap with
each other. This could make a single line part of multiple clones but we declare a line
“copy” whether it appears in one clone or many.

3.5 Bug Fixing History

For each of the systems that we studied, we focused only on bugs that had been
discovered and recorded within the project’s issue tracking system. However, is-
sue tracking systems, such as Bugzilla, are typically used to monitor both bug
reporting/fixing as well as the implementation of new features, or “enhancements”.
Consequently, we have ignored any entries marked as the latter. We define bug
as B = 〈OD, F D, D〉, where OD represents date when a bug was opened; FD as
the date when the bug was fixed and marked in the system as fixed; and D as the
description of the bug.

We link a fixed bug from issue tracker to a particular revision in the SCM. We call
this a bug fixing revision. We identify a bug fixing revision based on several different
heuristics. Various key words such as “bug”, “fixed” etc. in the SCM commit log
typically indicate a bug fixing revision (Mockus and Votta 2000). Also, a numerical
bug ID is typically mentioned in a bug fixing commit log, which can then be linked
back to issue tracking system’s issue identifier (Fischer et al. 2003; Čubranić and
Murphy 2003). We also crosscheck with the issue tracking system to see whether
such an issue identifier exists and whether its status changes after fixing the bug.

Empir Software Eng (2012) 17:503–530 511

Finally we use manual inspection to remove spurious linking as much as possible.
Our approach uses Bachmann’s linking heuristics; in fact, we gratefully acknowledge
the direct use of data derived by Bachmann and Bernstein (2009).

3.6 Buggy Code

In an ideal situation, a set of source code lines that introduced a bug can be defined
as buggy code. However, it is very difficult to precisely find the culpable code, so we
approximated the notion of buggy code. In this paper buggy code refers to a set of
source code lines which were modified to fix a bug. So, buggy code for i-th bug fixed
in revision r: BCi = {L f, j} where L f, j is the j-th changed line in file f for fixing that
bug (note: changed lines in a file may not be contiguous and buggy code for a single
bug can span multiple files).

To determine buggy code, we first identify a revision that fixes a bug. If a bug
is fixed in revision r we take the immediate preceding revision r − 1 and then we
identify all the files that were changed in revision r. We then find the lines changed
in each of these files. {L f, j} = Diff(fr, fr−1), where Diff is traditional Unix Diff
tool and fr is the version of the file f at revision r. For all changed files f the set
of changed lines {L f, j} comprises our buggy code for i-th bug. Note: we ignore any
newly introduced lines at revision r as they, by definition, could not be the cause of
the original bug.

3.7 Bug Staging Snapshot

We associate every bug with its closest preceding snapshot which we call its staging
snapshot (ssb). So, if a bug b is fixed in revision r and revision r − 1 (the last revision
prior to fixing that bug) occurs in month i of the project history, then i-th snapshot is
its staging snapshot. The staging snapshot is where buggy code for a bug is analyzed.
This is necessary because we do not have clone information available for some
arbitrary revisions other than the chosen snapshots.

Due to possible intervening changes to buggy files between ssb and r − 1, each of
the buggy lines in a buggy code at revision r − 1 may have different line number at
its staging snapshot. However, for our purposes we need the older line number at
ssb instead of the newer line number at r − 1. To map a line at lr−1 to lss, we used
Unix Diff utility to find all the changes made to that file during this time period. So,
if n lines were added and m lines were deleted on top of a given line number lr−1

between releases ssb and r − 1, we adjust the overall difference to find lss. Also, if
lr−1 was newly added some time after revision ssb (i.e., lr−1 was nonexistent in ssb),
then we ignore that line.

3.8 Buggy Cloned Code and Bug-Clone Ratio

Each of the lines in a buggy code fragment can be classified as either a copy or unique,
based on whether that line is part of any of the clones recognized by Deckard.
We called the copied lines of buggy code buggy cloned code. We then calculate the
ratio of such copied code in the buggy code, which we call bug-clone ratio. Note, to
determine any such partitioning of buggy code, we first mapped all the buggy code

512 Empir Software Eng (2012) 17:503–530

Table 1 Summary of studied
systems

Name Max size Total Lines per Number
snapshots snapshot of linked

bugs

Apache 208,388 155 124,462.62 453
Evolution 531,342 129 324,487.14 1,440
Gimp 947,073 130 755,511.68 2,103
Nautilus 366,894 116 131,062.94 747

to its staging snapshot and then determined intersection between buggy code and
copied lines of that snapshot.

4 The Data Sets

We chose four different medium- to large-sized open-source projects for our study.
All have a long development history, but are from different domains. All of the
projects are written in C. We summarize our projects below.

1. APACHE httpd—Apache httpd is a widely used open source web server. We
converted the repository from SVN to Git for ease of use.

2. NAUTILUS—Nautilus is the default file manager for the Gnome desktop. We
were able to use their Git repository directly.

3. EVOLUTION—Evolution is the default email client for the Gnome desktop with
support for integrated mail, address book and calender functionality. We used
their Git repository directly.

4. GIMP—Gimp is the most popular open source image manipulation program. We
used their Git repository directly.

A summary of descriptive statistics of the projects studied is presented in Tables 1
and 2. They range in size from 124 k lines to about 755 k lines. The tables present
details concerning the number of snapshots; average (computed over all snapshots)
statistics on the average total number of clone lines; number of members (clone)
per clone group; clone size in lines; number of cloned lines per snapshot; and total
number of linked bugs (over the entire period).

For all the projects, we first identify monthly snapshots and then run Deckard to
detect clones in those snapshots. We tag each of the lines of a snapshot as either a
“copy” or a “unique” line. We then identify all the bug fix revisions. Buggy code is
then identified by running Diff on the bug fix revision and its immediately preceding
revision. We then map those buggy lines to their corresponding staging snapshots.

Table 2 Summary of detected clones

Name Cloned lines Clones Lines Cloned lines Clones Lines
per snapshot per group per clone per snapshot per group per clone
(conservative) (conser.) (conser.) (liberal) (liberal) (liberal)

Apache 13,817.02 3.24 14.79 16,611.14 3.25 14.76
Evolution 26,322.54 2.49 15.27 33,011.09 2.56 15.34
Gimp 167,160.73 3.38 22.08 176,090.99 3.45 22.04
Nautilus 14,878.97 2.20 18.13 17,495.76 2.24 17.85

Data is averaged over all snapshots

Empir Software Eng (2012) 17:503–530 513

A simple set intersection is performed to classify each of the buggy lines as either
“copy” or “unique”. We then find the buggy cloned code and calculate the clone
ratio in the bugs. We stored all of our information in a PostgreSQL database before
processing them.

In one specific Apache snapshot, we found abnormal (4 fold) increase of source
code line count and a corresponding spike in the clone ratio. We believe this was
due to some accidental copying of major project elements, and we therefore ignored
that snapshot. All the bugs that have that snapshot as their staging snapshot, were
mapped back to the immediate preceding snapshot.

5 Findings

RQ1 To what extent does cloned code contribute to bugs? For each bug in the
project, we consider how much cloned code contributes to that bug, viz., its bug-
clone ratio. Now we can consider cumulative bug-clone ratio distribution for all the
bugs in a given project. So for example, if the cumulative distribution indicates that
most of the bugs have a clone ratio (defined earlier, in Section 3.8 above) between
80 and 100%, we can conclude that clones contribute heavily to bugs; alternatively, if
most of the bugs have 1% or lower clone ratio, then we know that clones contribute
almost no bugs.

Figure 1 shows the cumulative bug coverage at different clone ratios. We show
only Apache and Gimp as they are representative. The plot shows the fraction of
bugs that have a clone ratio ≤ a given clone ratio. So, if b bugs have a clone ratio ≤ r,
and there are total t bugs, then the plot shows b

t on the Y axis against r on the X axis.
1 − b

r bugs portion of bugs have higher clone ratio than Y. As is evident from the
plot, most of the bugs in both liberal and conservative clone detector settings contain
hardly any cloned code. In fact besides Gimp, 80% or more bugs in the other projects
contain no cloned code at all. Even for Gimp, this threshold is close to 80%. The
vertical lines depict the average clone ratio across all snapshots for different clone

a b

Fig. 1 Cumulative coverage of bugs at a given clone ratio (a) Apache (b) Gimp

514 Empir Software Eng (2012) 17:503–530

detector settings. So, e.g., we can say that for Gimp about 85% of bugs have lower
clone ratio than overall project clone ratio. This finding suggests that only a small
number of bugs are attributable to cloning.

RQ2 Do clones occur more often in buggy code than elsewhere? We compare all the
bugs’ clone ratio (proportion of cloned code, in all bugs, taken together) against the
overall clone ratio in the project at the time that bug is fixed. So, if a bug is fixed at
the r-th revision, and x% of the total code of the project, in the (r − 1)-th revision,
was from clones, we ask if the buggy code in that revision has a bigger or smaller
proportion of cloned code, compared to the overall project code. Since we do not
have clone information for all possible revisions, we just project each line number
back in the history to its staging snapshot and see whether a line is a clone or not. We
then compare the staging snapshot’s clone ratio against all the bugs’ combined clone
ratio that pertain to that staging snapshot. So, if a staging snapshot ssb has n different
bugs that include a combined total m lines, of which c total lines are contributed
by clones, we compare c

m against clone ratio of ssb . We consider two samples: each

a b

c d

Fig. 2 Clone ratio in bugs and snapshots for a Apache (Conservative) b Apache (Liberal)
c Gimp (Conservative) d Gimp (Liberal)

Empir Software Eng (2012) 17:503–530 515

Table 3 Comparison of clone ratio for conservative setting in buggy code and snapshot

Name Median ratio Median ratio Median Wilcoxon
for snapshot for bug difference p-value

Apache 0.0688 0 0.0688 3.777e-05
Evolution 0.0741 0.0274 0.0467 1.291-04
Gimp 0.1240 0.0562 0.0678 6.482e-06
Nautilus 0.0393 0 0.0393 3.394e-06

Alternative hypothesis set to “snapshot clone ratio > bug-clone ratio”. All p-values have been
adjusted using the Benjamini–Hochberg procedure

staging snapshots’ clone ratio and the corresponding coalesced clone ratio for all the
bugs attributed to that snapshot. We then compare them visually using boxplots, and
test if they are drawn from the same distribution (null hypothesis) using a paired
Wilcoxon test. The null hypothesis is, both of these distributions should be the same.
Note: in some cases, there may not be any bug projected to a particular snapshot and
we ignore that snapshot as that is not a staging snapshot for any bug.

Figure 2 shows boxplots of clone ratio in staging snapshots and corresponding
clone ratio in bugs that were fixed in those staging snapshots. For all the projects,
the boxplots clearly indicate a lower clone ratio in buggy code. For Apache with
the conservative clone detector setting, the difference between the two boxplots
is dramatic. Even with the liberal clone detector setting, the median of bug-clone
ratio is well below the median of snapshot clone ratio. This phenomenon is repeated
in all the other projects. The non-parametric paired Wilcoxon rank sum test (with
continuity correction) in all cases conclusively rejects the null hypothesis that the two
samples (clone ratios in buggy code and clone ratios in the entire snapshot) are drawn
from the same distribution. Corresponding effect size (difference of medians) and p-
values after Benjamini–Hochberg adjustment are presented in Tables 3 and 4. As we
mentioned earlier, we also experimented with several other clone detector parameter
settings. We found that as the similarity value is decreased and set to a very low value,
such as 0.95 along with smaller token size, such as 30, clone ratio in bugs increases
and the gap in median with the background distribution closes. However a Wilcoxon
rank sum test shows that the overall clone ratio remains significantly higher than
clone ratio in buggy code. These robust statistical results, that were observed across
all 4 projects, suggest that clones are not a major source of bugs.

RQ3 Are prolif ic clone groups more buggy than non-prolif ic clone groups? We
compare prolific clone groups’ bugginess with non-prolific clone groups’ bugginess.

Table 4 Comparison of clone ratio for liberal setting in buggy code and snapshot

Name Median ratio Median ratio Median Wilcoxon
for snapshot for bug difference p-value

Apache 0.0904 0 0.0904 3.3e-04
Evolution 0.0971 0.0437 0.0534 9.4e-05
Gimp 0.1412 0.0697 0.0716 2.2e-05
Nautilus 0.0591 0.0119 0.0472 1.1e-03

Alternative hypothesis set to “snapshot clone ratio > bug-clone ratio”. All p-values have been
adjusted using the Benjamini–Hochberg procedure

516 Empir Software Eng (2012) 17:503–530

We define defect density as the fraction of cloned lines of that group that contribute
to a bug. We compare defect density (number of buggy cloned lines per line of cloned
code) in lines that are part of prolific clone groups against lines that are part of non-
prolific clone groups. Since the total volume of buggy code mapped to a staging
snapshot is a tiny fraction of the overall project code, (and thereby many clone
groups may not contribute any buggy code) we only consider those clone groups that
contribute at least one line in some buggy code. Also, by normalizing contributed
buggy cloned lines for number of lines in that clone group we control for the disparity
of total cloned lines contributed by clone groups of different size.

One might expect that by dint of sheer size, prolific clone groups with more
code, and more copying will be associated with more defects than non-prolific clone
groups. As the copies proliferate, the defects will replicate in the copies, and thus
we would naively expect that the defect density buggy lines

total lines would remain a constant.
Figure 3 depicts our findings for Apache and Gimp. The rest of the projects are

a b

c d

Fig. 3 Defect density in clone groups of different sizes for different projects (a) Apache
(Conservative) (b) Apache (Liberal) (c) Gimp (Conservative) (d) Gimp (Liberal)

Empir Software Eng (2012) 17:503–530 517

Table 5 Comparison of defect density for conservative setting in non-prolific and prolific clone
groups

Name Median ratio Median ratio Median Wilcoxon
for non-prolific for prolific difference p-value

Apache 0.2273 0.0256 0.2016 6.933e-03
Evolution 0.125 0.0656 0.0594 1.418e-05
Gimp 0.1538 0.0282 0.1257 1.446e-110
Nautilus 0.1304 0.0694 0.061 1.000e-02

Alternative hypothesis set to “defect density in non-prolific group > defect density in prolific group”.
All p-values have been adjusted using the Benjamini–Hochberg procedure

very similar and thereby we omitted them for brevity. Note that the bug density
may occasionally go above 1.0. This is due to clone groups that contribute multiple
bugs to the same buggy code. In these cases, some lines will be counted more than
once, making the number of buggy lines greater than the total number of lines in
clone group. We find that prolific clone groups have a lower defect density than non-
prolific clone groups. Tables 5 and 6 shows the effect size (difference of medians)
and adjusted p-values (using Benjamini–Hochberg method) of Wilcoxon one-sided
rank sum test with continuity correction. The alternative hypothesis is set to “defect
density in non-prolific group is greater than defect density of prolific group”. All the
p-values are statistically significant; thus we reject null hypothesis. Clearly, there is a
strong signal observed in all the studied projects; more copies does not mean more
defects. In fact, the more copies, the lower the observed defect density.

We hasten to point out that others, for example (Göde and Koschke 2011; Kapser
and Godfrey 2006, 2008; Kim et al. 2005; Krinke 2008; Thummalapenta et al. 2009)
have argued that the fear of clones is perhaps overstated. To our knowledge however,
this is the first study to use data mined from version-control repositories and
reported bug-fixes to provide quantitative evidence that clones are not necessarily
to be feared. While Thummalapenta et al. (2009) study the clone evolution pattern
and their relation with bug fixing change sets, we mine data from source code
management system and issue tracking system to identify buggy code and their
association with cloned code. We also study the impact of quantitatively classified
clones (based on their defect proneness) and complement the research of Kapser and
Godfrey (2008) which study the relative presence of qualitatively classified clones.
Also, to our knowledge, ours is the first study to indicate that larger clone groups are
different from smaller clone groups with respect to defect attribution.

Table 6 Comparison of defect density for liberal setting in non-prolific and prolific clone groups

Name Median ratio Median ratio Median Wilcoxon
for non-prolific for prolific difference p-value

Apache 0.2083 0.0263 0.182 4.850e-12
Evolution 0.125 0.0465 0.0785 1.183e-19
Gimp 0.1443 0.0278 0.1166 2.373e-177
Nautilus 0.1026 0.0698 0.0328 8.920e-03

Alternative hypothesis set to “defect density in non-prolific group > defect density in prolific group”.
All p-values have been adjusted using the Benjamini–Hochberg procedure

518 Empir Software Eng (2012) 17:503–530

However, there could be another possible explanation of the observed phenom-
enon in RQ3. Prolific clone groups by definition have many members. A developer
may fix the same bug in multiple copies, but do so in multiple commits; he may not
identify every commit as a fix of a bug and/or present the bug ID in the commit log. In
such situations, our linking algorithm may miss some of the delayed fixes altogether.
This will deflate bug density in prolific clone groups and poses a significant threat
to RQ3 findings. However, Thummalapenta et al. (2009) found that developers are
able to remember location of clone copies and propagate changes consistently. In
only a small percentage of cases, usually less than 16% they actually underwent late
propagation. Similar findings were reported by Göde and Koschke (2011).

We however want to stress that the above mentioned threat to validity does not
affect our findings in RQ1 and RQ2. In RQ1, we consider cloned code in buggy
code, which is immune to the above mentioned bug linking problem. Unless there is
any systematic bias in bug linking that only links non cloned bugs while leaving out
others, our result is robust and statistically sound. Even if only one copy is linked
with a bug, we adjust both numerator and denominator when calculating clone ratio.

a b

c d

Fig. 4 Defect density in clone groups of different file scattering for different projects (a)
Apache (Conservative) (b) Apache (Liberal) (c) Gimp (Conservative) (d) Gimp (Liberal)

Empir Software Eng (2012) 17:503–530 519

Table 7 Comparison of defect density for conservative setting in file-scattered and file-collocated
clone groups

Name Median ratio Median ratio Median Wilcoxon
for collocated for scattered difference p-value

Apache 0.3333 0.075 0.2583 3.026e-08
Evolution 0.1429 0.1 0.0429 8.384e-09
Gimp 0.1566 0.1212 0.0353 1.888e-07
Nautilus 0.1504 0.1034 0.0469 6.000e-03

Alternative hypothesis set to “defect density in (file) scattered clones is higher”. All p-values have
been adjusted using the Benjamini–Hochberg procedure

In RQ2 we again work with clone ratio which is robust against the mentioned linking
problem. We ignore bugs that are not linked and consider clone ratio in linked bugs.
As long as there is no systematic bias in linking process to leave out bugs that have
cloned code in them, our results of RQ1 is also robust and statistically sound.

RQ4 Are scattered clones more buggy than collocated clones? For this research
question, we consider two different granularities. First, we try to find the impact
of f ile scattering on defect proneness; and next, we assess the impact of directory
scattering on defect proneness. We partition clone groups based on the number of
files (or directories) they span. Clone groups whose members reside in the same
file (or directory) are considered collocated. Scattered clone groups comprise the
rest. We assess the impact of scattering on defect proneness by comparing the defect
density (number of buggy lines per cloned line, buggy lines

total lines) for scattered and collocated
clone groups. Like RQ3, we only consider clone groups that contribute at least one
line in some buggy code.

Figure 4 compares the defect densities for collocated and scattered clone groups
at file level. We also test for statistical significance of the difference of mean defect
density across these two sample sets using the one tailed (alternative hypothesis set
to “defect density in (file) scattered clones are lower”) Wilcoxon signed rank test
with continuity correction. The results are shown in Tables 7 and 8. As is apparent
from the figure and the corresponding p-values, file-scattered clones may not induce
more defective code. Indeed file-scattered clones seem to have lower defect density.

The above result invited further study, particularly at a higher analysis granularity.
A logical extension is to do the same for directory scattering. We therefore partition
clone groups based on their directory scattering. The result is depicted in Fig. 5. As

Table 8 Comparison of defect density for liberal setting in file-scattered and file-collocated clone
groups

Name Median ratio Median ratio Median Wilcoxon
for collocated for scattered difference p-value

Apache 0.25 0.1071 0.1429 1.290e-09
Evolution 0.1429 0.0976 0.0453 9.932e-14
Gimp 0.1429 0.1129 0.03 1.868e-09
Nautilus 0.1111 0.0889 0.0222 3.000e-04

Alternative hypothesis set to “defect density in (file) scattered clones is higher”. All p-values have
been adjusted using the Benjamini–Hochberg procedure

520 Empir Software Eng (2012) 17:503–530

a b

c d

Fig. 5 Defect density in clone groups of different directory scattering for different projects
(a) Apache (Conservative) (b) Apache (Liberal) (c) Gimp (Conservative) (d) Gimp
(Liberal)

is apparent from the figure, there appears to be a significant effect for three projects
(except Nautilus in conservative clone detection settings where small sample size
and rather minor difference made it statistically insignificant) that directory scat-
tering may not induce more defective code. To determine statistical significance of

Table 9 Comparison of defect density for conservative setting in directory-scattered and directory-
collocated clone groups

Name Median ratio Median ratio Median Wilcoxon
for collocated for scattered difference p-value

Apache 0.2753 0.05 0.2253 1.230e-07
Evolution 0.125 0.0909 0.0341 7.642e-05
Gimp 0.1333 0.122 0.0114 0.009
Nautilus 0.1319 0.0988 0.0331 0.184

Alternative hypothesis set to “defect density in (directory) scattered clones is higher”. All p-values
have been adjusted using the Benjamini–Hochberg procedure

Empir Software Eng (2012) 17:503–530 521

Table 10 Comparison of defect density for liberal setting in directory-scattered and directory-
collocated clone groups

Name Median ratio Median ratio Median Wilcoxon
for collocated for scattered difference p-value

Apache 0.2083 0.0885 0.1199 5.280e-07
Evolution 0.125 0.0909 0.0341 5.280e-07
Gimp 0.125 0.1176 0.0074 0.003
Nautilus 0.1111 0.0714 0.0397 0.001

Alternative hypothesis set to “defect density in (directory) scattered clones is higher”. All p-values
have been adjusted using the Benjamini–Hochberg procedure

the difference, we present the effect size (difference of medians) and p-values from
the one tailed (alternative hypothesis set to “defect density in (directory) scattered
clones is lower”) Wilcoxon signed rank test with continuity correction in Tables 9
and 10. All the p-values except Nautilus in conservative settings are significant at
5% significance level, thereby rejecting the null hypothesis.

a b

c d

Fig. 6 Number of lines changed to fix bugs with high and low clone content (a) Apache
(Conservative) (b) Apache (Liberal) (c) Gimp (Conservative) (d) Gimp (Liberal)

522 Empir Software Eng (2012) 17:503–530

Table 11 Comparison of number of lines changed (Log10) for conservative setting in bugs with high
and low clone ratio

Name Median Log10 (lines) Median Log10 (lines) Median Wilcoxon
(high clone ratio) (low clone ratio) difference p-value

Apache 1.0792 2.3981 1.3189 9.334e-05
Evolution 1.2304 1.8129 0.5825 1.206e-10
Gimp 1.4771 2.0531 0.576 3.838e-15
Nautilus 1.3116 1.7118 0.4002 9.000e-04

Alternative hypothesis set to “Bugs with higher clone content require smaller bug fix change”. All
p-values have been adjusted using the Benjamini–Hochberg procedure.

We note that, RQ4 also suffers from the same threat to validity of RQ3. If
developers cannot propagate bug fixing changes to diverse locations in a clone group,
then scattered clones could show lower defect density. Thus, failure of a developer
to link a bug to multiple copies present in multiple files could also result in the same
phenomenon.

RQ5 Do bugs with higher clone content require more ef fort to f ix? As is evident
from RQ1, most of the bugs (more than 80%) have no cloned code and around 90%
of bugs have clone ratio less than project average. However, although a few clone-
related bugs (i.e., bugs that have at least some cloned code) have clone content more
than the project average, they might as well require very large change to fix, thereby
belying their apparent non significance. We therefore try to see whether fixing bugs
with more clone content (higher than the project average) requires significantly more
effort than fixing bugs with lower clone content (less than the project average). It
is difficult to quantify precisely the effort that it takes to fix a bug. Therefore, we
approximate effort with the size of the changes (measured in terms of lines of code)
to fix a bug.

To compare the relative effort required to fix bugs with higher and lower cloned
content we discard all non clone bugs (bugs with no cloned code) and then partition
the remaining bugs based on whether they have a higher clone ratio than project
average. “High clone ratio” partition contains bugs that have clone ratio more than
project average. We then compare number of lines changed to fix bugs with high
and low clone ratio. The resulting boxplot is shown in Fig. 6. All the boxplots clearly
indicate that bugs with high clone ratio require smaller bug fixing changes. We also
present the effect size (difference of medians) and p-values from Wilcoxon signed
rank test in Tables 11 and 12 to compare the mean number of lines changed in high

Table 12 Comparison of number of lines changed (Log10) for liberal setting in bugs with high and
low clone ratio

Name Median Log10 (lines) Median Log10 (lines) Median Wilcoxon
(high clone ratio) (low clone ratio) difference p-value

Apache 0.8451 1.7634 0.9183 4.564e-07
Evolution 1.2041 1.8062 0.6021 1.378e-11
Gimp 1.4472 1.9685 0.5213 6.768e-17
Nautilus 1.1901 1.7404 0.5503 7.851e-06

Alternative hypothesis set to “Bugs with higher clone content require smaller bug fix change”. All
p-values have been adjusted using the Benjamini–Hochberg procedure.

Empir Software Eng (2012) 17:503–530 523

and low clone ratio bugs. The alternative hypothesis is set to “bugs with high clone
ratio require smaller bug fix change”. All the p-values are very low, thereby clearly
rejecting the null hypothesis.

6 Case Study

To gain further insights as to why clones appear less buggy, we did a case study of
20 good quality (has very few bugs) clones (3 from conservative and 2 from liberal
for each of the 4 projects). In Listing 1, we show one very good quality (no buggy
code) clone which comes from a group of 2 clone members. Both of the members
come from the file “libnautilus-private/nautilus-file.c” in a snapshot taken on 20th
November, 2000. This code tries to set a file’s owner and before doing that it checks
to see whether the user has required privileges or whether the user is same as the
current file owner. If everything goes well, then the code proceeds to change the
owner of the file. A very similar role of a file manager is to change the group of the

void n a u t i l u s _ f i l e _ s e t _ o w n e r (N a u t i l u s F i l e ∗ f i l e ,
cons t char ∗user_name_or_id ,
Naut i lu sF i leOpera t ionCal lback ca l lback ,
g p o i n t e r c a l l b a c k _ d a t a)

{
u i d _ t new_id ;
i f (! n a u t i l u s _ f i l e _ c a n _ s e t _ o w n e r (f i l e)) {

n a u t i l u s _ f i l e _ c h a n g e d (f i l e) ;
(∗ c a l l b a c k) (f i l e , GNOME_VFS_ERROR_ACCESS_DENIED,

c a l l b a c k _ d a t a) ;
r e t u r n ;
}
i f (! get_user_id_from_user_name (user_name_or_id ,&new_id)

&& ! g e t _ i d _ f r o m _ d i g i t _ s t r i n g (user_name_or_id ,&new_id))
{

n a u t i l u s _ f i l e _ c h a n g e d (f i l e) ;
(∗ c a l l b a c k) (f i l e ,GNOME_VFS_ERROR_BAD_PARAMETERS,

c a l l b a c k _ d a t a) ;
r e t u r n ;

}
i f (new_id == f i l e −>d e t a i l s −>info −>uid) {

(∗ c a l l b a c k) (f i l e ,GNOME_VFS_OK, c a l l b a c k _ d a t a) ;
r e t u r n ;

}
set_owner_and_group (f i l e ,

new_id ,
f i l e −>d e t a i l s −>info −>gid ,
ca l lback , c a l l b a c k _ d a t a) ;

}

Listing 1 Example Clone in Nautilus

524 Empir Software Eng (2012) 17:503–530

file. Another clone from the same group achieves that and copies the above code
exactly, but the sequence of helper method calls are different (e.g., instead of calling
get_user_id_from_user_name, it calls get_group_id_from_group_name; instead of
calling nautilus_file_can_set_owner, it calls nautilus_file_can_set_group). This file
has 4,552 lines of code in that snapshot, of which 2,779 lines were identified as cloned
code by Deckard. Also, our linked bug data shows that a total of 58 bugs were fixed
during the project lifetime and a total of 798 lines were modified during bug fixing,
but not a single bug has any cloned code in them.

In Listing 2, we show another clone from one of the largest clone groups, with
27 members totaling 775 lines of cloned code. All the clones come from different
files, so this group spans 27 different files. Interestingly, all these clones share a
common API protocol, a clone pattern documented by Kapser and Godfrey (2008).
All of these clones first check whether some option is set, allocate an object, set
some properties, and then return that object. The code shown creates a ColorBalance
object. Other clones likewise create different types of objects such as HueSaturation,
BrightnessContrast, ByColorSelect etc. Our linked bug data indicates that a total of
50 bugs were fixed in all the files containing these clones during project lifetime, of
which only 1 bug has trace of cloned code. This buggy cloned code came from some
other clone in one of these files, but not from the above mentioned 27 member group.

We also did a case study on 800 randomly picked clone groups, 100 from each of
the projects and clone detector settings (liberal and conservative) to assess quality of

Tool∗ too l s_new_color_ba lance ()
{

Tool ∗ t o o l ;
ColorBalance ∗ p r i v a t e ;
i f (! c o l o r _ b a l a n c e _ o p t i o n s)

c o l o r _ b a l a n c e _ o p t i o n s = t o o l s _ r e g i s t e r _ n o _ o p t i o n s
(COLOR_BALANCE, ‘ ‘ Color Balance Options ’ ’) ;

t o o l = (Tool ∗) g_malloc (s i z e o f (Tool)) ;
p r i v a t e = (ColorBalance ∗) g_malloc (s i z e o f (ColorBalance)) ;

tool −>type = COLOR_BALANCE;
tool −>s t a t e = INACTIVE;
tool −>s c r o l l _ l o c k = 1 ; /∗ Disal low s c r o l l i n g ∗ /
tool −>p r i v a t e = (void ∗) p r i v a t e ;
tool −>auto_snap_to = TRUE;
tool −>but ton_press_ func = c o lor_ b a l a n c e _ b u t t o n _ p r e s s ;
tool −>b u t t o n _ r e l e a s e _ f u n c = c o l o r _ b a l a n c e _ b u t t o n _ r e l e a s e ;
tool −>motion_func = color_balance_motion ;
tool −>arrow_keys_func = standard_arrow_keys_func ;
tool −>cursor_update_func = color_ba lance_cursor_update ;
tool −>c o n t r o l _ f u n c = c o l o r _ b a l a n c e _ c o n t r o l ;
r e t u r n t o o l ;

}

Listing 2 Example Clone in Gimp

Empir Software Eng (2012) 17:503–530 525

Table 13 Number of false
positives in 100 randomly
chosen samples for different
clone detector settings

Name False positives False positives
(conservative) (liberal)

Apache 0 0
Evolution 1 3
Gimp 0 1
Nautilus 1 3

clones detected by Deckard and to understand clone patterns. We used PostgreSQL
random() function to pick random samples and found up to 3% false positives
(Table 13). All false positive clone groups have similar ASTs, but a careful look indi-
cates that they are unlikely to be clones. A great many of our observed clone groups
contain direct copy/paste, or embody protocols for carrying important, common
operations. Arguably, programmers copying from well-written code, or regurgitating
familiar programming logic from memory are less likely to produce error-prone code.
Others were an artifact of the C language, and could be avoided using object oriented
techniques. For example, in one Gimp clone group, members create different type of
drawing objects (e.g., brush editor, gradient editor, palette editor) with slight change
of code. This could have been avoided using a Factory Method or Builder pattern.
Clearly, the availability of bounded polymorphism would have avoided code bloat:
however, it appears, at least in this case, developers can manually generate bloated
code to mimic bounded polymorphism without unduly impacting quality.

On the other hand, some clones simply cannot be avoided. For example, in
Nautilus, one clone group has two member functions for handling going back/
forward in the file browser. Based on the action performed, these methods reorder
two linked list (in different direction) and perform other actions on those list. A
forced refactoring using linked list and function abstraction could render the code
overly unintuitive. We also found some duplicate files in the projects.

In summary, all our evidence points to one conclusion: Clones do not really need
to be considered a “bad smell”.

7 Threats to Validity

7.1 Construct Validity

Bugs were collected from the Bugzilla databases for each project, and thus may not
represent the complete set of all bugs. As the primary method by which users report
problems, per community norms, and as they are reported manually and confirmed,
we claim that project databases represent an important class of bugs which are
indicative of aberrant behavior.

We used an automated bug linking process which may not be completely accurate.
As a result, there may be both false positives and false negatives in the linked
set. As discussed in Section 5 under RQ3, this does not pose an undue threat to
RQ1 and RQ2, but some plausible failures to link might especially threaten the
validity of our conclusion for RQ3 and RQ4. In a prior study (Bird et al. 2009) we
evaluated the false positive and false negative rates and found the upper bounds on
95% confidence intervals to be less than 1% for bugs which were indeed linked by
developers. Moreover, our bug introduction identification algorithm uses the Diff

526 Empir Software Eng (2012) 17:503–530

tool. It is entirely possible that some of the changes in a revision marked as a bug fix
are not, in fact, fixing lines which caused the bug. In our prior study (Bird et al. 2009),
we also found that less severe bugs are more likely to get linked by the developers.
Such linking bias could introduce imprecision as we may end up studying the impact
of cloning on less severe bugs more than the more severe bugs. In lieu of these
problems we use an approach used by well known prior studies (Śliwerski et al. 2005).
Accuracy in identifying bug introducing changes may be increased by using advanced
algorithms (Kim et al. 2006, 2008) and we are currently involved in additional studies
assessing the quality of such data.

We use monthly snapshots instead of running analysis on every revision. This may
introduce some imprecision as some of the buggy lines may not be mapped back to
its staging snapshot because of their introduction into the system after their staging
snapshot. We ignore such lines, but given the life of the projects (an average age of
132 monthly snapshots) and the level of significance observed in our findings, the
results presented are robust. Also, our choice of monthly snapshot may not capture
some late propagation of changes in different clone members (we do not build a
clone genealogy, so once they have different staging snapshots, they are considered
to affect different clone groups). However, we evaluated our datasets to determine
the effect of such late propagation and found that on an average only 3.3% of bugs
have fixes with late propagation that have different staging snapshots. So, this should
not pose a significant threat to the validity of RQ3 and RQ4. Note however, that
RQ1, RQ2 and RQ5 are not affected by this threat. In addition, although clone
identification is not a sound and precise type of analysis (indeed, the very definition
of a clone remains fuzzy and up for debate to some degree), we benefit by making
use of Deckard, which represents the current state of the art in clone detection.

7.2 Internal Validity

We have presented strong evidence that clones occur less frequently in buggy
code than in the entire body of code. While strong correlation exists, the stringent
requirements for causality have not been shown (Kan 2002). Despite this, our results
do indeed cast doubt on the belief that code clones actually cause more bugs than
non-cloned code, and provide support for further research examining why cloned
code is decidedly less buggy.

7.3 External Validity

In an attempt to address the generalizability of our findings, we have studied four
real software projects that represent varying software processes and governance
styles (Berkus 2007), with fairly consistent results across the different projects.
However, while it is reasonable to believe that our results are representative of open
source software, it is unclear how well they generalize to commercial software.

All of our projects are written in C which is a procedural language. While C is
a very popular language, it is remarkably different from object-oriented languages
like Java.Given the rich encapsulation support of OOP it is entirely possible that the
cloning trend would be different, thereby influencing our results. Again, we have
provided evidence that clones may in fact benefit code and plan to evaluate the
relationship of clones with software quality in more diverse contexts.

Empir Software Eng (2012) 17:503–530 527

8 Conclusion

We have studied several medium to large projects to verify whether cloning is really a
“bad smell”. We took an empirical approach, based on actual bug-fix data to evaluate
the extent to which clones are associated with code implicated in bug fixes. We find
that 1) most bugs have very little to do with clones; 2) cloned code, in fact contains
less “buggy code” (viz., code implicated in bug fixes) than the rest of the system;
3) larger clone groups do not have more bugs than smaller clone groups, and in fact,
making more copies of code does not introduce more defects; and furthermore, larger
clone groups have lower bug density per line than smaller clone groups; 4) scattered
clones across files or directories may not induce more defects; and 5) bugs with high
clone content may require less effort to fix (as measured in number of lines changed
to fix a bug). While others have made the argument before that clones are not to
be feared, our study is the first to quantitatively validate this claim using data mined
from version control and bug repositories. In addition, to our knowledge ours is the
first study to consider differences between smaller and larger clone groups.

Acknowledgements We would like to thank Adrian Bachmann and Avi Bernstein for the Univ.
of Zurich bug linking data. We also thank Lingxiao Jiang, Ghassan Mishergi, Zhendong Su and
Stephane Glondu for providing us DECKARD. We extend our gratitude to anonymous reviewers
for valuable comments on this paper. We acknowledge support from an IBM Faculty Fellowship,
and a gift from Microsoft Research. Most of all we acknowledge with gratitude support from the NSF
Science of Design Program, grant No. SoD-TEAM 0613949. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

Alkhatib G (1992) The maintenance problem of application software: an empirical analysis. J Softw
Maint: Res Pract 4(2):83–104. doi:10.1002/smr.4360040203

Bachmann A, Bernstein A (2009) Data retrieval, processing and linking for software process
data analysis. Technical report, University of Zurich. http://www.ifi.uzh.ch/ddis/people/adrian-
bachmann/pdq/. Accessed May 2009

Baker BS (1995) On finding duplication and near-duplication in large software systems. In:
WCRE ’95: proceedings of the 2nd working conference on reverse engineering. IEEE Computer
Society, Washington, pp 86–95. http://portal.acm.org/citation.cfm?id=836911

Balazinska M, Merlo E, Dagenais M, Lague B, Kontogiannis K (1999) Partial redesign of java
software systems based on clone analysis. In: WCRE ’99: proceedings of the 6th work-
ing conference on reverse engineering. IEEE Computer Society, Washington, pp 326–336.
http://portal.acm.org/citation.cfm?id=837061

Barbour L, Khomh F, Zou Y (2011) Late propagation in software clones
Baxter ID, Yahin A, Moura L, Sant’Anna M, Bier L (1998) Clone detection using abstract syntax

trees. In: Proceedings of the international conference on software maintenance, pp 368–377.
doi:10.1109/ICSM.1998.738528

Berkus J (2007) The 5 types of open source projects. http://www.powerpostgresql.com/5_types.
Accessed 20 March 2007

Bird C, Bachmann A, Aune E, Duffy J, Bernstein A, Filkov V, Devanbu P (2009) Fair and balanced?:
bias in bug-fix datasets. In: ESEC/FSE ’09: proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on the foun-
dations of software engineering. ACM, New York, pp 121–130. doi:10.1145/1595696.1595716

Bruntink M, van Deursen A, van Engelen R, Tourwe T (2005) On the use of clone de-
tection for identifying crosscutting concern code. IEEE Trans Softw Eng 31(10):804–818.
doi:10.1109/TSE.2005.114

Cai D, Kim M (2011) An empirical study of long-lived code clones. Fundamental approaches to
software engineering, pp 432–446

http://dx.doi.org/10.1002/smr.4360040203
http://www.ifi.uzh.ch/ddis/people/adrian-bachmann/pdq/
http://www.ifi.uzh.ch/ddis/people/adrian-bachmann/pdq/
http://portal.acm.org/citation.cfm?id=836911
http://portal.acm.org/citation.cfm?id=837061
http://dx.doi.org/10.1109/ICSM.1998.738528
http://www.powerpostgresql.com/5_types
http://dx.doi.org/10.1145/1595696.1595716
http://dx.doi.org/10.1109/TSE.2005.114

528 Empir Software Eng (2012) 17:503–530

Čubranić D, Murphy GC (2003) Hipikat: recommending pertinent software development artifacts.
In: ICSE ’03: proceedings of the 25th international conference on software engineering. IEEE
Computer Society, Washington, pp 408–418. http://portal.acm.org/citation.cfm?id=776816.776866

Ducasse S, Rieger M, Demeyer S (1999) A language independent approach for detecting duplicated
code. In: Proc. IEEE int. conf. on software maintenance 1999 (’99). Oxford, UK, pp 109–118

Ekoko ED, Robillard MP (2007) Tracking code clones in evolving software. In: ICSE ’07: proceed-
ings of the 29th international conference on software engineering. IEEE Computer Society,
Washington, pp 158–167. doi:10.1109/ICSE.2007.90

Fischer M, Pinzger M, Gall H (2003) Populating a release history database from version con-
trol and bug tracking systems. In: ICSM ’03: proceedings of the international conference on
software maintenance. IEEE Computer Society, Washington, pp 23–32. http://portal.acm.org/
citation.cfm?id=943568

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: improving the design of exist-
ing code, 1st edn. Addison-Wesley Professional. http://www.amazon.com/exec/obidos/redirect?
tag=citeulike07-20&path=ASIN/0201485672

Gabel M, Jiang L, Su Z (2008) Scalable detection of semantic clones. In: ICSE ’08: proceedings
of the 30th international conference on Software engineering. ACM, New York, pp 321–330.
doi:10.1145/1368088.1368132

Geiger R, Fluri B, Gall H, Pinzger M (2006) Relation of code clones and change couplings.
In: Baresi L, Heckel R (eds) Fundamental approaches to software engineering. Lecture
notes in computer science, vol 3922, chap 31. Springer, Berlin/Heidelberg, pp 411–425.
doi:10.1007/11693017_31

Göde N, Koschke R (2011) Frequency and risks of changes to clones. In: Proceeding of the 33rd
international conference on software engineering. ACM, pp 311–320

Higo Y, Kamiya T, Kusumoto S, Inoue K (2005) Aries: refactoring support tool for code clone.
SIGSOFT Softw Eng Notes 30(4):1–4. doi:10.1145/1082983.1083306

Jiang L, Misherghi G, Su Z, Glondu S (2007a) Deckard: scalable and accurate tree-based detection
of code clones. In: ICSE ’07: proceedings of the 29th international conference on software
engineering. IEEE Computer Society, Washington, pp 96–105. doi:10.1109/ICSE.2007.30

Jiang L, Su Z, Chiu E (2007b) Context-based detection of clone-related bugs. In: ESEC-FSE ’07:
proceedings of the the 6th joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on the foundations of software engineering. ACM, New York,
pp 55–64. doi:10.1145/1287624.1287634

Juergens E, Deissenboeck F, Hummel B, Wagner S (2009) Do code clones matter? In: ICSE ’09:
proceedings of the 2009 IEEE 31st international conference on software engineering. IEEE
Computer Society, Washington, pp 485–495. doi:10.1109/ICSE.2009.5070547

Kamiya T, Kusumoto S, Inoue K (2002) CCFinder: a multilinguistic token-based code clone
detection system for large scale source code. IEEE Trans Softw Eng 28(7):654–670.
doi:10.1109/TSE.2002.1019480

Kan S (2002) Metrics and models in software quality engineering. Addison-Wesley Longman
Publishing Co., Inc., Boston

Kapser C, Godfrey M (2008) Cloning considered harmful considered harmful: patterns of cloning in
software. Empir Software Eng 13(6):645–692

Kapser C, Godfrey MW (2006) “Cloning considered harmful” considered harmful. In: Working
conference on reverse engineering, pp 19–28. doi:10.1109/WCRE.2006.1

Kawaguchi S, Yamashina T, Uwano H, Fushida K, Kamei Y, Nagura M, Iida H (2009) Shinobi: a tool
for automatic code clone detection in the ide. In: Working conference on reverse engineering,
pp 313–314. doi:10.1109/WCRE.2009.36

Kim M, Bergman L, Lau T, Notkin D (2004) An ethnographic study of copy and paste programming
practices in oopl. In: International symposium on empirical software engineering, pp 83–92.
doi:10.1109/ISESE.2004.1334896

Kim M, Sazawal V, Notkin D, Murphy G (2005) An empirical study of code clone genealogies.
SIGSOFT Softw Eng Notes 30(5):187–196. doi:10.1145/1095430.1081737

Kim S, Zimmermann T, Pan K, Jr J (2006) Automatic identification of bug-introducing changes.
In: ASE ’06: proceedings of the 21st IEEE/ACM international conference on automated soft-
ware engineering. IEEE Computer Society, Washington, pp 81–90. doi:10.1109/ASE.2006.23

Kim S, Whitehead E, Zhang Y (2008) Classifying software changes: clean or buggy? IEEE Trans
Softw Eng 34(2):181–196

Komondoor R, Horwitz S (2001) Using slicing to identify duplication in source code. In: Cousot P
(ed) Static analysis, lecture notes in computer science, chap 3, vol 2126. Springer, Berlin, pp 40–
56. doi:10.1007/3-540-47764-0_3

http://portal.acm.org/citation.cfm?id=776816.776866
http://dx.doi.org/10.1109/ICSE.2007.90
http://portal.acm.org/citation.cfm?id=943568
http://portal.acm.org/citation.cfm?id=943568
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201485672
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201485672
http://dx.doi.org/10.1145/1368088.1368132
http://dx.doi.org/10.1007/11693017_31
http://dx.doi.org/10.1145/1082983.1083306
http://dx.doi.org/10.1109/ICSE.2007.30
http://dx.doi.org/10.1145/1287624.1287634
http://dx.doi.org/10.1109/ICSE.2009.5070547
http://dx.doi.org/10.1109/TSE.2002.1019480
http://dx.doi.org/10.1109/WCRE.2006.1
http://dx.doi.org/10.1109/WCRE.2009.36
http://dx.doi.org/10.1109/ISESE.2004.1334896
http://dx.doi.org/10.1145/1095430.1081737
http://dx.doi.org/10.1109/ASE.2006.23
http://dx.doi.org/10.1007/3-540-47764-0_3

Empir Software Eng (2012) 17:503–530 529

Komondoor R, Horwitz S (2003) Effective, automatic procedure extraction. In: IWPC ’03: proceed-
ings of the 11th IEEE international workshop on program comprehension. IEEE Computer
Society, Washington, pp 33–42. http://portal.acm.org/citation.cfm?id=857023

Krinke J (2007) A study of consistent and inconsistent changes to code clones. In: WCRE ’07:
proceedings of the 14th working conference on reverse engineering. IEEE Computer Society,
Washington, pp 170–178. doi:10.1109/WCRE.2007.7

Krinke J (2008) Is cloned code more stable than non-cloned code? In: 2008 8th IEEE interna-
tional working conference on source code analysis and manipulation, pp 57–66. doi:10.1109/
SCAM.2008.14

Li Z, Lu S, Myagmar S, Zhou Y (2004) CP-Miner: a tool for finding copy-paste and related
bugs in operating system code. In: OSDI’04: proceedings of the 6th conference on sympo-
sium on opearting systems design & implementation. USENIX Association, Berkeley, p 20.
http://portal.acm.org/citation.cfm?id=1251274

Mäntylä M, Lassenius C (2006) Subjective evaluation of software evolvability using code smells: an
empirical study. Empir Software Eng 11(3):395–431. doi:10.1007/s10664-006-9002-8

Mockus A, Votta LG (2000) Identifying reasons for software changes using historic databases. In:
Proceedings international conference on software maintenance, 2000. IEEE Computer Society,
Los Alamitos, pp 120–130. doi:10.1109/ICSM.2000.883028

Nguyen TT, Nguyen HA, Pham NH, Al-Kofahi JM, Nguyen TN (2009) Clone-aware configuration
management. In: ASE ’09: proceedings of the 2009 IEEE/ACM international conference
on automated software engineering. IEEE Computer Society, Washington, pp 123–134.
doi:10.1109/ASE.2009.90

Rahman F, Bird C, Devanbu P (2010) Clones: what is that smell? In: Proceedings of the 7th working
conference on mining software repositories. IEEE Computer Society

Roy C, Cordy J (2007) A survey on software clone detection research. Queens School of Computing
TR 541:115

Selim G, Barbour L, Shang W, Adams B, Hassan A, Zou Y (2010) Studying the impact of clones
on software defects. In: 2010 17th working conference on reverse engineering (WCRE). IEEE,
pp 13–21

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? In: MSR ’05: pro-
ceedings of the 2005 international workshop on mining software repositories. ACM, New York,
pp 1–5. doi:10.1145/1083142.1083147

Thummalapenta S, Cerulo L, Aversano L, Di Penta M (2009) An empirical study on the maintenance
of source code clones. Empir Software Eng 15(1):1–34. doi:10.1007/s10664-009-9108-x

Toomim M, Begel A, Graham SL (2004) Managing duplicated code with linked editing. In: VLHCC
’04: proceedings of the 2004 IEEE symposium on visual languages—human centric computing.
IEEE Computer Society, Washington, pp 173–180. doi:10.1109/VLHCC.2004.35

Foyzur Rahman is a Ph.D. Candidate in the Department of Computer Science at the University of
California, Davis. He works with Professor Prem Devanbu. He finished his MS in Computer Science
from UC Davis in 2010, and obtained his BS in Computer Science and Engineering from Bangladesh
University of Engineering & Technology (BUET). Prior to joining the graduate group at UC

http://portal.acm.org/citation.cfm?id=857023
http://dx.doi.org/10.1109/WCRE.2007.7
http://dx.doi.org/10.1109/SCAM.2008.14
http://dx.doi.org/10.1109/SCAM.2008.14
http://portal.acm.org/citation.cfm?id=1251274
http://dx.doi.org/10.1007/s10664-006-9002-8
http://dx.doi.org/10.1109/ICSM.2000.883028
http://dx.doi.org/10.1109/ASE.2009.90
http://dx.doi.org/10.1145/1083142.1083147
http://dx.doi.org/10.1007/s10664-009-9108-x
http://dx.doi.org/10.1109/VLHCC.2004.35

530 Empir Software Eng (2012) 17:503–530

Davis, he spent nearly 8 years developing large software solutions such as Online Banking Software
and ERP Solutions along with some artificial intelligence projects for implementing intelligent
multilingual input method. He studied many open source projects along with a few corporate projects
at Cisco and published papers in top Software Engineering Venues. His primary research interest is
in Empirical Software Engineering which includes software process, product and people.

Christian Bird is a researcher in the empirical software engineering group at Microsoft Research. He
is primarily interested in the relationship between software design, social dynamics, and processes in
large development projects. He has studied software development teams at Microsoft, IBM, and in
the Open Source realm, examining the effects of distributed development, ownership policies, and
the ways in which teams complete software tasks. He has published in the top software engineering
venues and is the recipient of the ACM SIGSOFT distinguished paper award. Christian received his
Ph.D. from U.C. Davis under Prem Devanbu and was a National Merit Scholar at BYU, where he
received his B.S. in computer science.

Prem Devanbu received his B.Tech in Electronics Engineering from the Indian Institute of
Technology in Chennai, India, before you were born, and his PhD in Computer Science from Rutgers
University in 1994. After spending nearly 20 years at Bell Labs and its various offshoots, he escaped
New Jersey to join the CS faculty at UC Davis in late 1997. His primary research interests are in
empirical software engineering.

	Clones: what is that smell?
	Abstract
	Introduction
	Related Work
	Automatic Detection of Clones
	Clone Evolution
	Tool Support
	Clones and Bugs

	Terminology
	Snapshot and Revision
	Finding Clones
	Scattered and Collocated Clones
	Copy and Unique
	Bug Fixing History
	Buggy Code
	Bug Staging Snapshot
	Buggy Cloned Code and Bug-Clone Ratio

	The Data Sets
	Findings
	Case Study
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion
	References

